
Motion in Space

Let r(t) = 〈f(t), h(t), g(t)〉. Think of r(t) the position of a spacecraft at time t.

r′(t) = 〈f ′(t), h′(t), g′(t)〉 = v(t) is the velocity of r(t).

The arc length of r(t) from time a to t is
∫ t

a
|r′(u)|du.

Hence speed of the spacecraft is v(t) = d
dt

∫ t

a
|r′(u)|du = |r′(t)| which also is the magnitude

of the velocity, v(t).

The acceleration of r(t) is r′′(t) = 〈f ′′(t), h′′(t), g′′(t)〉 = v′(t) = a(t). Force is ma.

The unit tangent of r(t) is T(t) = r′(t)
|r′(t)| .

Since the unit tangent has length 1, T′(t) and T(t) are orthogonal. The unit normal is

N(t) = T′(t)
|T′(t)| .

The unit binormal B(t) = T(t)×N(t).

Unless forced one never wants to find N(t) and/or B(t) as a function of time. (Differentiating
T(t) can be painful.) One should determine T(a) and N(a) and then take the cross product.
But unless you are forced to find N(a) there is an easier way to find B(t): I.e., B = v×a

|v×a| =
r′×r′′
|r′×r′′| . In turn we can use B and T to find N; N = B×T.

The tangent line at t = t0 is the line though r(t0) in the direction of r′(t0) = v(t0) or T(t0).
So l(t)− r(t0) = tr′(t0).

The normal plane at t = t0 is the plane though r(t0) with a normal in the direction of
r′(t0) = v(t0) or T(t0). So [〈x, y, z〉 − r(t0)] · r′(t0) = 0.

The osculating plane at t = t0 is the plane though r(t0) containing T(t0) and N(t0). Hence
a normal for this plane is B(t0). So [〈x, y, z〉 − r(t0)] ·B(t0) = 0.

The curvature of a curve r(t) is κ(t) = |T′(t)|
|r′(t)| = |T′(t)|

v(t)
= |r′(t)×r′′(t)|

|r′(t)|3 . The curvature is always

positive. The tighter the curve the larger the curvature.
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We know that v(t) = v(t)T(t). Hence a = v′(t)T(t)+v(t)T′(t) = v′(t)T(t)+v(t)|T ′(t)|N(t).
So a(t0) breaks into two components; one in the direction of the unit tangent and one in
the direction of the unit normal, a(t0) = aTT(t0) + aNN(t0). The tangential component of
acceleration (at time t0) is aT . The normal component of acceleration (at time t0) is aN .
a(t0) is orthogonal to B(t0).

Note a(t) · v(t) = (aTT(t) + aNN(t)) · v(t)T(t) = aTv. So aT = v(t)·a(t)
v(t)

.

The normal component aN is v(t)|T ′(t)|. Since both these terms are always ‘positive, aN
is always positive. Now |a(t)|2 = a2T + a2N , since T(t) and N(t) are orthonormal. Hence

aN =
√
|a(t)|2 − a2T . But also |T ′(t)| = κ(t)v(t). So aN = κv2.

Hence the plane determined by T and N and the plane determined by v and a are the same
plane, the osculating plane. So the osculating plane is normal to v × a and B = v×a

|v×a| .


